SULPHUR CAP

COMPLIANCE OPTIONS - SOLUTIONS & CHALLENGES

IMO MARPOL & Regional SOx Regulations

KOSTAS VLACHOS

Compliant Options Available

- 1. RUN THE VESSELS WITH MGO (distillate)
- 2. RUN THE VESSELS with LSHFO 0.5%
- 3. RUN THE VESSELS WITH HSFO and EGCS
- 4. RUN THE VESSELS WITH LNG
- RUN THE VESSELS WITH ALTERNATE MARINE PETROLEUM FUELS (LPG, Methanol, LPG, BioFuels and DME)

Assessment of Fuel Oil Availability (MEPC 70/05/03)

Fuel demand projections in the base case, high case and low case in 2020

Sulphur (% m/m)	Petroleum Derived fuels			LNG	
	<0.10% 0.10-0.50%		>0.50%		
	Million tones per year				
Base case	39	233	36	12	
High case	48	290	14	12	
Low case	33	198	38	13	

Assessment of Fuel Oil Availability (MEPC 70/05/03)

Global Refinery Production (2012 and 2020) - million tonnes per year

	Production in 2012	Production in 2020
Gasoline	963	1,086
Naptha	256	305
Jet/Kero Fuel	324	331
Middle Distillate	1,316	1,521
of which MGO	64	39
Total Marine Heavy Fuel Oil (HFO)	228	269
of which Marine HFO (S ≤ 0.50% m/m)	0	233
of which Marine HFO (S > 0.50% m/m)	228	36
LPG	113	110
Other	784	537
Total	3,984	4,159

14/11/2017 KOSTAS VLACHOS 5

Assessment of Fuel Oil Availability (MEPC 70/05/03)

Global marine fuel demand and supply (2020) base case - million tonnes per year

Base case marine fuel demand 2020 (supply)					
Sulphur (% m/	Pe	LNG			
m)	<0.10%	0.10 - 0.50%	>0.50%		
Africa	2 (2)	12 (9)	1 (1)	0.6	
Asia	18 (18)	110 (104)	15 (15)	3.1	
Europe	9 (9)	54 (55)	8 (8)	1.2	
North America	4 (4)	26 (17)	3 (3)	3.4	
Latin America	3 (3)	21 (24)	3 (3)	0.1	
Middle East	1 (1)	5 (18)	4 (4)	1.8	
Russia & CIS	1 (1)	7 (7)	1 (1)	1.8	
World	39 (39)	233 (233)	36 (36)	12	

Assessment of Fuel Oil Availability (MEPC 70/05/03

Refinery Products and Crude Oil prices (USD/tonnes except for Brent)

Product	2010	2012	2014	2016	2018	2020
MGO 0.10% m/m SUL	672	997	896	452	552	616
Fuel oil 0.50% m/m SUL	-	-	-	-	-	595
Fuel oil 1% m/m SUL	625	918	809	390	497	569
Fuel oil 3% m/m SUL	521	741	616	252	377	466
Brent crude (USD/bbl)	80	112	99	49	63	77

Prices based on EnSYs Energy Study

Concerns for Availability & 2020

- ➤ Global Fuel Compliance via 100% Marine Distillate would not be realistic;
- ➤ In 2020 the Global refining Industry will lack sufficient Sulphur plant & Hydrogen plant capacity;
- Refinery CO2 emission will increase;
- > Incentives for Refineries to offer heavier 0,5% S grades at lower cost than distillate;
- > There might be questions for the heavier fuels in regards to effective onboard use;
- > A Full-on Switch to the GLOBAL SULPHUR STANDARD Cannot be occurred overnight.

PROS & CONS for the various Options

1. DISTILLATE LOW SULPHUR

- PROS
- **Low Cost Modifications Are Required.**
- Widely used without major Concerns
- CONS
- > Expected high difference price compared with HFO
- Modifications in storage tanks, piping
- > Low viscosity and Lubricity issues. Additives and systems (Chillers-Coolers)

PROS & CONS for the various Options

- LSFO 0.5% Sulphur
 - PROS
 - ➤ No modifications are expected for existing vessels
 - Price is expected lower than the Distillate
 - CONS
 - **→** Concerns of compliance with ISO 8217/12 parameters
 - ➤ Mixing/Commingling fuels of different viscosities (ranged from 10 to 180 cSt)/densities increase the risk of incompatibility
 - ➤ The blending components move towards heavier product, with 15% of treated light distillate have a risk to have a flash point lower than 60.
 - > Blends with 15% treated light distillate increase the flammability and explosivity limits
 - Unstable fuels.

Exhaust Gas Cleaning Systems (EGCSs)

- PROS
 - > Compliant Method for Continuing using Low Cost Fuel.
- CONS
 - **Economic Analysis is required**
 - Regulatory Constraints in Operation
 - > Technical & Operational Feasibility
 - > Availability of EGCSs
 - Other constraints

Economic Analysis

EGCS investment costs used in this study

EGCS type	Fixed investment costs (million USD)	Variable investment costs (USD per kW of installed engine power)
Open loop, retrofit	2.3-2.6	55
Open loop, newbuild	1.9-2.4	38
Hybrid, retrofit	2.8-3.4	58
Hybrid, newbuild	2.4-2.8	44

EGCS Operational Costs

EGCS operational costs used in this study EGCS type

EGCS type	Operational costs
Open loop	1% additional fuel + USD 13,000 + 0.4 * Рм.е. (kW)
Hybrid	0.50% additional fuel + USD 25,000 + 0.4 * Рм.е. (kW)

Technical & Operational Feasibility of EGCS

Cost-effectiveness of EGCSs as a function of engine size

Discounted Pay Back period for a VLGC

Open Loop Discounted Payback Period

Open Loop EGCS	Discounted Payback Period		
M/E	4.9		
M/E and A/E	4.7		
M/E, A/E and A/B	5.0		

Hybrid Discounted Payback Period

Hybrid EGCS	Discounted Payback Period		
M/E	5.8		
M/E and A/E	5.6		
M/E, A/E and A/B	5.8		

Cumulative Annual Cost Balance point

Regulatory constraints on EGCS use

- ☐ Restriction of Discharge of washwater in:
 - Several Ports (e.g. Antwerp, Hamburg),
 - estuaries (e.g. the Wese) and
 - coastal waters (e.g. Alaska, Belgium, Italy).
- ☐ Probable Regulations conflict
 - with the Water Framework Directive (EC, 2000) and
 - the Marine Strategy Framework Directive (EC, 2008).
 - The uncertainty resulting from this discussion currently has a negative impact on demand for EGCSs.

SHIPOWNERS that opt to invest in an EGCS Shall Consider to invest in a HYBRID unit

Technical and operational constraints on EGCS use

- > the space required for EGCSs and the impact on cargo space;
- impacts on vessel stability;
- > impacts on power requirements; and
- > compatibility of EGCSs with NOx Tier III requirements.

EGCS availability and Other constraints

- > The production capacity;
- ➤ The dry docking capacity;
- **▶** Imbalance between cost and benefit for the Owner;
- > Risk of underperformance

LNG Option

- PROS
- ➤ Environmentally Friendly Fuel. Meet 0.1% SOx and Nox III and have reduced CO2 emissions;

KOSTAS VLACHOS

- > Low OPEX
- CONS
- ➤ High CAPEX;
- Not yet established LNG Bunkering infrastructure;
- Large Regional Variations in price
- ➤ High Capacity Volume for Bunker tanks

Discounted Pay Back period for a VLGC

LNG	Discounted Payback Period	
M/E, A/E and A/B	7.4	

14/11/2017 KOSTAS VLACHOS 2

Cumulative Annual Cost Balance point

Cumulative Annual Cost Balance Point	M/E Only	M/E and A/E	M/E, A/E and A/B
Compliant Fuel vs LNG	-	-	7.70 years
Open Loop EGCS vs LNG	Never*	Never*	Never*
Hybrid EGCS vs LNG	11.27 years	13.01 years	11.88 years

^{*} Never means that the balance point is not reached before the end of the study period

Alternate Marine Petroleum Fuels (LPG, Methanol, LPG, BioFuels and DME)

- PROS
- Very Clean fuel fully compliance with SOx;
- Lower OPEX for LPG;
- CONS
- Very High Capex;
- Not Tested Engines and Technology
- > Suitable for specific type of vessels

Concerns & Challenges

- ☐ Extreme price differentials caused by shift to 0.5% enhance the economics for EGCS;
- ☐ This argument might create a perceived risk that specific refinery investment could become "stranded";
- ☐ In turn this will cut the justification for and likehood of investments occurring;
- ☐ As a conclusion the FULL compliance by implementing any OPTION needs TIME.
- ☐ There is NO EASY AVAILABLE SOLUTION

Challenges to Ensure Consistent Implementation

- ☐ Consistent and Effective implementation of the Sox cap is A Must for commercial & Environmental Reasons;
- ☐ Uneven implementation Shall Raise UNCERTAINTY for Actual Demand vs Supply chain;
- A Standard form for Reporting FUEL OIL NON AVAILABILITY is required
- ☐ Mechanisms to encourage verification of the S% limit stated on BDN;
- ☐ Time to ensure that the theoretical blends are suitable for Marine Engines and Crew Risk
- ☐ Time line for Developing UNIFORM & EFFECTIVE Implementation

Conclusions

- 1. Stakeholders to consider transition measures for the effective implementation;
- 2. Refineries to make the investment that are necessary for supply of compliant fuel;
- 3. The blending fuels to be in compliance with ISO Standards for safe and effective use onboard;
- 4. The owners to review carefully the available options and decide based on their real needs;
- 5. The makers to invest properly in the new technologies offering reliable solutions.

THANK YOU FOR YOUR ATTENTION

QUESTIONS?